
Delivering Software Quality and
Security through Test, Analysis
and Requirements Traceability

Increase Productivity with
Automated Unit/Integration/Low

Level Testing with LDRAunit®

Overview

LDRAunit®, LDRA’s class leading stand alone unit/
integration test tool, provides a complete verification
environment for the automated generation and
management of test harnesses and unit/integration tests.
This solution maximises developer productivity by giving
them the ability to focus on implementing correct software
functionality versus burdensome and time consuming,
low-level manual testing activities.

LDRAunit automates and increases test throughput
and repeatability to significantly increase overall test
effectiveness. Software development managers seeking to
develop the highest quality code in the most cost effective
manner are leveraging automated unit/integration testing
to avoid the potential delays caused by inefficient manual
low-level testing strategies. These traditional techniques
often are inadequate and postpone the discovery and
correction of defects until late in system test where they
are most expensive to fix.

Making use of the comprehensive control/data flow
analysis provided by LDRA Testbed®, LDRAunit determines
details of the unit interface, parameters, globals (input
and output), return values, variable types and usage and
procedure calls. Traditionally this level of information
could only have been specified by a developer with an
expert knowledge of the unit(s) under test. By automating
this process LDRAunit frees up highly qualified staff who
may then be re-assigned to other modelling, design and
development tasks.

LDRAunit facilitates several test scenarios:

• Single procedures, functions, methods (Unit test)
• Files containing many functions, classes (Module/
 integration test)
• Complete programs (Sub system & system test)

LDRA has revolutionised the traditional “unit testing”
activity, which is typically performed on the host and/
or target systems with its new automatic testing
capability, eXtreme Testing.

This high degree of test automation saves both
time and resources, thereby enabling a quicker time
to market. LDRAunit’s ability to work in a highly
distributed environment provides complete visibility
into the overall development processes which can
be accomplished even if development teams are
distributed globally.

Unit/Integration Testing Embedded Systems
with LDRAunit

LDRAunit supports the creation and execution of test
cases in multiple environments, namely:

LDRA's Unit/Integration Testing Features:

• Automated test driver / harness generation
 with no manual scripting requirement

• High levels of test throughput via the intuitive
 graphical and command line interface options

• Sophisticated automated analysis facilities
 which reduce test effort, freeing up developers
 and empowering testers

• Storage and maintenance of test data and
 results for fully automated regression analysis

• Automated detection and documentation of
 source code changes

• Tool driven test vector generation

• Execution of tests in host, target and simulator
 environments

• Automated generation of test case
 documentation including pass/fail and
 regression analysis reports

• Host/Host
• Host/Target
• Host/Simulator

Software TechnologySoftware Technology

Unit Testing/
Module Testing with LDRAunit®

LDRAunit Features

Automatically Generated Driver Program/Test
Harness

LDRAunit utilises sophisticated control flow and data flow
analysis techniques to document the interface to the unit(s)
under test in full. This level of information then enables
LDRAunit to automatically generate test drivers removing
the need for manual scripting.

There are no limitations to the automatically generated
driver. It is pure C/C++, Ada 83/95 or Java depending on the
application code and can be executed in the host, target or
simulator environment as required.

Stub Creation

Stubs can be written by hand or generated automatically
for functions, methods, constructors, system calls,
packages, generics, etc. The automatically generated
“managed stubs” are sufficiently complete to allow the test
harness to build and execute.

The default behaviour of managed stubs can be modified
via an intuitive graphical user interface to tune such items
as return and global parameter values. For instance, it is
possible to vary return values depending on the number of
occasions on which the stubbed function has been called,
whilst passed parameter values can become pass/fail
criteria for the unit tests themselves.

Exception Handling

Exceptions can be automatically caught and test cases
can be passed or failed dependent on whether such an
exception has been raised. The exception handling method
is configurable.

The exception handlers themselves can also be subject
to unit tests. Such tests can be applied irrespective of
whether the exceptions are raised, allowing coverage to be
achieved even when the raising of an exception would be
impractical.

eXtreme Testing

eXtreme Testing builds on LDRAunit’s ability to
automatically populate unit test cases, extending this to
the generation of the test cases themselves. It automates
the unit/module/integration testing processes and, by
encompassing test harness and test vector production,
it eliminates almost all of the overhead associated with
bottom-up testing. It is the fastest and simplest way to get
started with unit testing.

Features include the ability to automatically fine tune the
processes used to create the test vectors to optimise the
level of coverage achieved. Vectors generated by means
of eXtreme Test can then be complemented by means of
manually generated test cases.

LDRAunit enables the fully automated creation of test driver programs. The generated
driver handles all language features automatically. Key features are detailed below:

Test Case Files/Test Case Management/Storage

LDRAunit stores groups of test cases as sequences. Users
can then export a sequence to a Test Case File (TCF) which
contains all of the information required to re-run the
test cases. TCF’s can be grouped with regression reports
and can be stored for regression verification and either
saved with the source file, via a software configuration
management (SCM) system, or used as an annotation.
Requirements based testing documentation, including
why particular values were chosen and tags to map to
a requirement management system, can be added for
storage.

When used as a SCM annotation these files allow managers
to determine directly from the SCM system that developers
are testing their code on check in. TCF’s can also be re-run
from the command line and in batch mode so that as the
source code changes module interfaces and output can
be verified. For companies concerned about managing
outsourced development, TCF files can be easily distributed
and provide a standard template around the world.

Structural Coverage Metrics

LDRAunit has access to the full range of coverage metrics
available in the LDRA tool suite. These include Procedure
Call, Statement, Branch/Decision, MC/DC and LCSAJ (Test
Path). Users can choose an appropriate metric or set of
metrics based on their safety and program constraints.
For example, MC/DC coverage is essential to verify results
are not masked by condition input conditions and LCSAJ
coverage provides a comprehensive metric to evaluate
loops. All of these metrics are available graphically, via flow
graph displays, call graph displays and the file view of the
LDRAunit GUI. Users can directly access compliance reports

to give overall pass / fail metrics for standards such as
DO-178B/C. Line by line views indicating which statements,
branches and conditions have been executed are also
shown in these reports.

LDRAunit Features

• Abstract Class Testing

• Automatic Creation of Compound Objects in
 Test

• Access to Private and Protected Data

• Re-use of Tests through Class Hierarchy

• Polymorphism

• Inheritance

• Templates

• Structure/Arrays/Unions

• Automated Resolution of Templated Types

• Classes

• Automatic Creation & Object “Re-Use”
 (Through Attachment)

• Access Methods & Attributes through the
 entire Hierarchy

• Exceptions

• Pointers

• Generics (Ada)

• In / Out Parameters (Ada)

• Records (Ada)

Additional Automatically Handled Language Features:

Cr
ea

te
 N

ew
 T

es
ts

Run the tests in:
 – Host / Host
– Host / Target

– Host / Simulator
environment

Safety Critical
Standards

 Conformance

DO-178B/C
Certification

Ranges,
bounds,

exceptions,
deltas,

arithmetic
expressions

Interrogate results to determine correctness
and use test verification to analyse the coverage

and data values.

Implement test strategy or test plan.

Analyse source code to create or update
fully populated unit test environment.

Select the functions / classes /methods /
procedures to test.

Unit / Module Test

Compile tests into your chosen
test execution environment.

Tests have the full flexibility offered by your
compiler and target environment.

Populate the test case(s) with data values and
optionally expected outcomes.

 Default and range values can be added manually
or through automatically generated vectors.

Combination
strategy

Path
based testing

Requirements
based testing

Software TechnologySoftware Technology

LDRA’s Automated Unit
Testing Process with LDRAunit

Regress tests in an automated process
which is easily updated through a

hand holding procedure.

Enterprise
Management

Reporting

Publish test artifacts
for certification

LD
R

A
unit v2.1 11/13

Other languages and host / target platforms are available. Please contact LDRA for more information.

Target Platforms

LDRAunit is available for the following source code languages and host / target platforms:

www.ldra.com

All brand names and product names mentioned herein are trademarks or
registered trademarks of their respective companies.
Picture acknowledgements: Chrysler, General Electric, Lockheed Martin,
Sellafield, NASA, Pratt & Whitney, Toyota, United Space Alliance
LDRA Ltd. reserves the right to change any specifications contained within
this literature without prior notice.

Designed by Young Greenwood Design (01260) 226541

© 2013 LDRA Ltd

Toyota’s GT 86

F-35 Lightning II

Pratt & Whitney F135 Engine for JSF

LDRA Technology, Inc.
2540 King Arthur Blvd, Suite #228 Lewisville Texas 75056

Tel: +1 (855) 855 5372
e-mail: info@ldra.com

LDRA Technology Pvt. Ltd
#2989/1B, 3rd Floor, 12th Main, 80 Feet Road,

HAL II Stage, Bangalore- 560008. Near BSNL Building
Tel: +91 80 4080 8707

e-mail: india@ldra.com

LDRA UK & Worldwide
Portside, Monks Ferry, Wirral, CH41 5LH

Tel: +44 (0)151 649 9300
e-mail: info@ldra.com

Orion Crew Exploration Vehicle7

IDE:
Analog Devices
AONIX
ARM
Cosmic
Eclipse
Freescale
GNU
Green Hills

IAR
iSYSTEM
Keil
QNX
TI
Renesas
TASKING
Wind River

Processor:
ARM
Freescale
Infineon
Intel
MIPS
PowerPC
Renesas
TI

Client Testimonials

Languages & Platforms

‘We found that the graphical user interface was easy to work
with and made developing a rapid, intuitive test process a lot
easier than creating it manually. This saving was further increased
through the repeatability of tests utilising the automated
regression testing facilities. This automated solution made our job
a lot easier. The LDRA tool suite resulted in a saving of £2 million.’
Tom Roberts, Engineering Manager, Embedded Software and Systems, Ultra Electronics Datel

‘LDRA has proven they will support us in any way to get the job
done especially in meeting demanding milestones. They provided
outstanding support for several F-35 teammates: Lockheed Martin
(Fort Worth), BAE (Warton), Northrop Grumman (El Segundo),
Seaweed, and Honeywell which directly contributed to a successful
first flight of the AA-1 aircraft. We continue to work closely with LDRA
to develop the needed automated process support to ensure that our
software meets program cost, schedule, and quality targets.’
John H. Robb, Air Vehicle Software Senior Manager, LMCO

‘Once the LDRA tool suite has analysed the code, it knows the inputs and
outputs, expected returns and types, and every function. So, instead of

spending months hand-coding and qualifying a test harness, the tool can
use this information to automatically generate a test harness that will call
every function, feed data in and out, and test every path of the program.’

Trevor Tidwell, Software Development Engineer, USA

‘LDRA has the ability to work with hardware that has limited resources
which is important in the automotive sector in order to meet the

demands for cost reduction and downsizing. We use the LDRA tool
suite as a benchmark for other third-party and similar software

platform products.’
Akihito Iwai, Project Manager DENSO Japan

LDRA’s best in class features are
illustrated on real world projects
with the client testimonials below.

Languages
C/C++
Ada 83
Ada 95
Java

Host Platforms
Windows 7/8/XP
Solaris
Linux
RHEL 5 32 bit

RHEL 6 64 bit
Ubuntu 10.10 32 bit
Ubuntu 12.04 64 bit

